Resolving confounding enrichment kinetics due to overlapping resonance signals from 13C-enriched long chain fatty acid oxidation and uptake within intact hearts.
نویسندگان
چکیده
PURPOSE Long chain fatty acid (LCFA) oxidation measurements in the intact heart from 13C-NMR rely on detection of 13C-enriched glutamate. However, progressive increases in overlapping resonance signal from LCFA can confound detection of the glutamate 4-carbon (GLU-C4) signal. We evaluated alternative 13C labeling for exogenous LCFA and developed a simple scheme to distinguish kinetics of LCFA uptake and storage from oxidation. METHODS Sequential 13C-NMR spectra were acquired from isolated rat hearts perfused with 13C LCFA and glucose. Spectra were evaluated from hearts supplied: U 13C LCFA, [2,4,6,8,10,12,14,16-(13) C8 ] palmitate, [2,4,6,8,10,12,14,16,18-(13) C9 ] oleate, [4,6,8,10,12,14,16-(13) C7 ] palmitate, or [4,6,8,10,12,14,16,18-(13) C8 ] oleate. RESULTS 13C signal reflected the progressive enrichment at 34.6 ppm from GLU-C4, confounded by additional signal with distinct kinetics attributed to 13C-enriched LCFA 2-carbon (34.0 ppm). Excluding 13C at the 2-carbon of both palmitate and oleate eliminated signal overlap and enabled detection of the exponential enrichment of GLU-C4 for assessing LCFA oxidation. CONCLUSION Eliminating enrichment at the 2-carbon of 13C LCFA resolved confounding kinetics between GLU-C4 and LCFA 2-carbon signals. With this enrichment scheme, oxidation of LCFA, the primary fuel for cardiac ATP synthesis, can now be more consistently examined in whole organs with dynamic mode, proton-decoupled (13C-NMR
منابع مشابه
Probing the origin of acetyl-CoA and oxaloacetate entering the citric acid cycle from the 13C labeling of citrate released by perfused rat hearts.
We present a strategy for simultaneous assessment of the relative contributions of anaplerotic pyruvate carboxylation, pyruvate decarboxylation, and fatty acid oxidation to citrate formation in the perfused rat heart. This requires perfusing with a mix of 13C-substrates and determining the 13C labeling pattern of a single metabolite, citrate, by gas chromatography-mass spectrometry. The mass is...
متن کاملPeroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate.
We previously showed that a fraction of the acetyls used to synthesize malonyl-CoA in rat heart derives from partial peroxisomal oxidation of very long and long-chain fatty acids. The 13C labeling ratio (malonyl-CoA)/(acetyl moiety of citrate) was >1.0 with 13C-fatty acids, which yields [13C]acetyl-CoA in both mitochondria and peroxisomes and < 1.0 with substrates, which yields [13C]acetyl-CoA ...
متن کاملSynthesis and initial evaluation of 17-(11)C-heptadecanoic acid for measurement of myocardial fatty acid metabolism.
UNLABELLED Fatty acid oxidation defects are being increasingly identified as causes of abnormal heart function and sudden death in children. Children with medium-chain acyl-coenzyme A (acyl-CoA) dehydrogenase defects can metabolize fatty acids labeled in the carboxylic acid end of the compound. Accordingly, our goal was to label a long-chain fatty acid in the omega-position and evaluate its myo...
متن کاملIndexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance.
Although the tricarboxylic acid (TCA) cycle is the prime means of carbon metabolism for energy generation in normal myocardium, the noninvasive quantification of TCA cycle flux in intact cardiac tissues is difficult. A novel approach for estimating citric acid cycle flux using 13C nuclear magnetic resonance (NMR) is presented and evaluated experimentally by comparison with measured myocardial o...
متن کاملRecruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
BACKGROUND Transport rates of long-chain free fatty acids into mitochondria via carnitine palmitoyltransferase I relative to overall oxidative rates in hypertrophied hearts remain poorly understood. Furthermore, the extent of glucose oxidation, despite increased glycolysis in hypertrophy, remains controversial. The present study explores potential compensatory mechanisms to sustain tricarboxyli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 74 2 شماره
صفحات -
تاریخ انتشار 2015